If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6y^2+24y-72=0
a = 6; b = 24; c = -72;
Δ = b2-4ac
Δ = 242-4·6·(-72)
Δ = 2304
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2304}=48$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-48}{2*6}=\frac{-72}{12} =-6 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+48}{2*6}=\frac{24}{12} =2 $
| (6x+11)+97=180 | | 1.5x+1.5(x-3)+1.5×3(x-3)=117 | | 3x+5+4×=19 | | 71+2=v+3 | | 21=m+9;m=9 | | (2x-8)=(2x+8) | | 6x-19=-8x+23 | | 10(x-1.7)=3 | | x^2+18x+20.25=-65.75 | | 5=1/2m=-4 | | X-21+x=180 | | X-15=18x | | 60=14x=3(12+6x) | | 60=14x=3(12+6x | | 2b+9=3(b+2) | | 3-6x-1.6=15-3x+x | | 1/3a+11=-1 | | 5(a-4)=2a-3 | | 36x+27x^2=0 | | -3p+2(-5-8p=) | | (2x+1)=(x+5)8 | | -1.55x=-2.55 | | (2x+1)7=(x+5)8 | | 8=8(u+3)-4u | | 36=0.4r | | x+1.3=-2.8 | | 36=3v+3(v-2) | | 9b+8=32+5b | | 16=8(y+5)-2y | | x−2=−6x+3 | | (4x+10)=(26+5x) | | Y=x2+8x+7 |